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Abstract
The time-dependent non-crossing approximation is used to study the transient
current in a single-electron transistor attached asymmetrically to two leads
following a sudden change in the energy of the dot level. We show that for
asymmetric coupling, sharp features in the density of states of the leads can
induce oscillations in the current through the dot. These oscillations persist
to much longer timescales than the timescale for charge fluctuations. The
amplitude of the oscillations increases as the temperature or source–drain bias
across the dot is reduced and saturates for values below the Kondo temperature.
We discuss the microscopic origin of these oscillations and comment on the
possibility for their experimental detection.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum effects are likely to play an increasing role in electronic devices as the physical size
of their components continues to shrink. Quantum dots and qubits are examples of devices
where quantum effects play a direct role in their function. In a single-electron transistor (SET),
i.e. a quantum dot coupled to two metallic leads, the conductance can be drastically enhanced
by the Kondo effect, which can occur when the quantum dot is populated by an odd number
of electrons [1–8]. The Kondo effect is a quantum-coherent many-body state in which a spin
singlet state is formed between the unpaired localized electron and delocalized electrons at the
Fermi energy at low temperatures [9].

An important issue for the function of any electronic device is how fast it can respond to
time-dependent perturbations and bias [10, 11]. Several studies of the time-dependent response
of symmetrically coupled SET have been performed using a variety of methods [12–21]. In
the case of a sudden switching of the dot level, the transient current has been found to exhibit
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several distinct timescales [22–25]. The fastest timescale is associated with charge relaxation
and the other much slower timescales are associated with the formation of a Kondo state,
i.e. spin dynamics. The detailed evolution of the instantaneous currents following a sudden
change of the dot level has been shown to depend sensitively on external parameters such as
source–drain bias, external temperature, dot–lead coupling and position of the dot level. These
above-mentioned time-dependent studies have all been concerned with quantum dots which are
symmetrically coupled to their leads. While the effect of asymmetric coupling on the steady-
state conductance of an SET has been studied both theoretically and experimentally [26, 27],
to our knowledge, the transient transport properties of an asymmetrically coupled dot in the
Kondo regime have not been investigated previously.

In this paper, we use a recently developed multi-scale many-body transport method to study
the effect of asymmetric dot–lead coupling on the transient transport in a quantum dot [28]. We
show that for a quantum dot asymmetrically coupled to two leads with sharp features in their
density of states (DOS), the current can display sinusoidal modulations for timescales well
beyond the fast charge relaxation timescale. The frequency of these sinusoidal modulations
is given by the energy difference between the Kondo resonance and the DOS feature. The
amplitude of the oscillations is found to increase with decreasing temperature and source–
drain bias and saturate for temperatures below the Kondo scale. We attribute this phenomenon
to an interference effect between the Kondo resonance at the Fermi level of the leads and
the conduction electrons around the DOS feature. The magnitude of the oscillations depends
sensitively on the structure of the DOS feature of the leads. We show that these oscillations can
also occur for leads with a smooth DOS but with finite bandwidth.

2. Time-dependent current in infinite-U Anderson model

The SET is modeled as a single spin-degenerate level of energy εdot coupled to leads through
tunnel barriers,

H (t) =
∑

σ

εdot(t)nσ +
∑

kασ

εknkασ + 1
2

∑
Unσ nσ ′ +

∑

kασ

[
Vα(εkα)c†

kασ cσ + h.c.
]
, (1)

where c†
σ (cσ ) and c†

kασ (ckασ ) with α = L, R create (annihilate) an electron of spin σ in the dot
level and in the left (L) and right (R) leads, respectively. The nσ and nkασ are the corresponding
number operators and Vα are the hopping amplitudes for the left and right leads. The Coulomb
repulsion energy U is assumed to be sufficiently large that double occupancy of the dot level is
prohibited. In the following, we will use atomic units with h̄ = kB = e = 1.

To deal with large Coulomb correlation, we use the auxiliary boson method for the
Anderson Hamiltonian. Briefly, the ordinary electron operators on the site are decomposed
into a massless boson operator and a pseudofermion operator as

cσ = b† fσ , (2)

with the constraint that the number of massless ‘slave’ bosons plus the number of
pseudofermions

Q = b†b +
∑

σ

f †
σ fσ (3)

must be equal to unity. Self-energies for the pseudofermion and massless ‘slave’ boson are then
projected onto the physically relevant Q = 1 subspace.

The Green’s functions of the dot levels are calculated using the non-crossing
approximation (NCA) by numerical integration on a multi-scale time grid [28]. When the
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dot level εdot lies well below the Fermi level εF, the spectral function of the dot (local density
of states) exhibits two features: a broad Fano-like resonance of full-width

�tot(ε) = 2π
∑

k

(|VL(εk)|2 + |VR(εk)|2)δ(ε − εk) (4)

around the dot level, and a sharp temperature-sensitive resonance at the Fermi level (the Kondo
peak), characterized by a low energy scale TK (the Kondo temperature)

TK ∝
(

D�tot

4

) 1
2

exp

(
−π |εdot|

�tot

)
, (5)

where D is a high-energy cutoff equal to half the bandwidth of the conduction electrons and
�tot corresponds to the value of �tot(ε) at ε = εF. All energy units in this paper will be given
in terms of �tot.

The current flowing through the SET can be calculated as the difference between the
currents from the left and right leads as

I (t) = IL(t) − IR(t). (6)

The most general expression for the net current flowing from the left(right) lead is given by [29]

IL(R)(t) = −2 Im

(∫ t

−∞
dt1

∫
dε

2π
e−iε(t1−t)�L(R)(ε)

× ei
∫ t

t1
dτ	L(R)(τ )[G<(t, t1) + fL(R)(ε)GR(t, t1)]

)
, (7)

where the coupling functions �L(R)

�L(R)(ε) = 2πρL(R)(ε)VL(R)(ε)V ∗
L(R)(ε), (8)

depend on the DOS of the leads ρL(R)(ε) and the hopping matrix elements in equation (1). The
quantity 	L(R) represents the time dependence of the single-particle energies in the left and right
leads. In this paper, we consider the case of a small constant bias across the leads and no explicit
time and energy dependence of the hopping matrix elements, therefore VL(R)(ε) = VL(R)(εf).
We further make the assumption that the DOS of the leads are the same, i.e. ρL(R)(ε) = ρ(ε).
Thus the coupling functions can be parameterized as,

�L(R)(ε) = �̄L(R)ρ(ε), (9)

where �̄L(R) are constants given by �̄L(R) = 2π |VL(R)(εf)|2 and they determine the asymmetry
of the couplings. In terms of these constants, �tot = (�̄L + �̄R)ρ(εf).

In figure 1 we show the functions ρ(ε) that will be used to model the leads. The
Lorentzians used in figures 1(c) and (d) to model sharp DOS features have a width equal to
0.002 �tot. The DOS function ρ(ε) has been normalized for all cases such that the bands
contain the same number of electrons. The bandwidth of the leads is assumed to be 2D with
the Fermi energy at ε = 0.

The expression for the current can then be written as

I (t) = −2�̄L Im

(∫ t

−∞
dt1(G<(t, t1)h(t − t1) + GR(t, t1) fL(t − t1))

)

+ 2�̄R Im

(∫ t

−∞
dt1(G<(t, t1)h(t − t1) + GR(t, t1) fR(t − t1))

)
, (10)

where

h(t − t1) =
∫ D

−D

dε

2π
ρ(ε)eiε(t−t1), (11)

fL(t − t1) =
∫ D

−D

dε

2π
ρ(ε)

eiε(t−t1)

1 + eβ[ε− V
2 ]

, (12)
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Figure 1. This figure shows the functions ρ(ε) used to model the leads. Panel (a) corresponds to
a rectangular band, (b) to a parabolic band, and (c) and (d) to parabolic bands with a Lorentzian
feature located at ε = −D/2 and −3D/4, respectively.

and

fR(t − t1) =
∫ D

−D

dε

2π
ρ(ε)

eiε(t−t1)

1 + eβ[ε+ V
2 ]

. (13)

In these expressions, V represents the source–drain bias.
The physical Green’s functions in equation (10) can be expressed in terms of the

pseudofermion and slave boson Green’s functions using a projection approach discussed
previously [30]. The final expression for the current is

I (t) = −2�̄L Im

(∫ t

−∞
dt1(G<

pseudo(t, t1)BR(t1, t)h(t − t1)

)

− i((GR
pseudo(t, t1)B<(t1, t) + G<

pseudo(t, t1)BR(t1, t)) fL(t − t1)))

+ 2�̄R Im

(∫ t

−∞
dt1(G<

pseudo(t, t1)BR(t1, t)h(t − t1)

)

− i((GR
pseudo(t, t1)B<(t1, t) + G<

pseudo(t, t1)BR(t1, t)) fR(t − t1))). (14)

This is the main result of this section and will be used in the calculations presented below.

3. Results

In this section we will analyze the instantaneous current following a sudden change of the
dot level from a position at ε1 = 5�tot below the Fermi level where, for the present finite
temperatures, the Kondo effect will be absent to a position at ε2 = 2�tot closer to the Fermi
energy where the Kondo effect will be present. For a parabolic DOS function (figure 1(b)) with
D = 9�tot, the Kondo temperature in the final state is approximately TK = 0.0016�tot.

We begin our analysis by investigating the effect of asymmetric coupling to the leads. We
define the asymmetry factor as the the ratio �̄L/�̄tot, where �̄tot = �̄L + �̄R. In figure 2, the
instantaneous conductance, G = I (t)/V , is plotted as a function of time after the dot level is
switched for various asymmetry factors with small bias. The final steady-state conductances
are in perfect agreement with previous theoretical results [31]. The transient short timescale
associated with �tot shown in figure 2(a) is due to the formation of the broad Fano-like
resonance at ε2. The transient increase in the instantaneous current is due to the charging
of the dot. The steady-state current is determined by the asymmetry factor. For an asymmetry
factor of 1 where the steady-state current is zero, we have verified the accuracy of our numerical
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Figure 2. Black (dotted), blue (dashed) and red (dot–dashed) curves in panel (a) show the
instantaneous conductance versus time for rectangular DOS in figure 1(a) immediately after the
dot level is switched to its final position for asymmetry factors of 0.95, 0.9 and 0.85, respectively.
�tot is fixed with D = 9�tot at T = 0.0093�tot and V = TK. The beginning of the oscillations is
clearly visible in this panel. Black (dotted), blue (dashed) and red (dot–dashed) curves in panel (b)
are the continuation of those in the first panel in the long timescale for the same parameters.

approach by showing that the integrated current is equal to the change in the charge of the dot
level.

Figure 2(b) shows the instantaneous conductances for larger times on a magnified scale.
It is clear from this panel that the current exhibits sinusoidal modulations at timescales
well beyond �L or �R. As we reduce the asymmetry factor, the amplitude of these
sinusoidal modulations starts decreasing and eventually disappears for symmetric coupling.
The frequency of the conductance oscillations is equal to the bandwidth D of the leads.
External parameters such as the energy or width of the dot level, asymmetry factor, and ambient
temperature and source–drain bias only influence the amplitude of the oscillations.

In figure 3 we show the effect of the the DOS function of the leads, ρ(ε), on the
conductance oscillations. The oscillations do not look like perfectly sinusoidal functions
because of our use of a finite time step in the numerical solution of the Dyson equations.
However, the results are fully converged and for finer time steps we recover almost perfectly
sinusoidal oscillations. Figure 3 reveals that the DOS can have a pronounced effect on the
conductance oscillations. The largest oscillations occur for a DOS with a peak feature as in
figures 1(c) and (d). For a parabolic DOS function (figure 1(b)), conductance oscillations
are still present but not discernible on the scale of the figure. The frequency of the current
oscillations is equal to the energy difference between the Fermi level of the leads and the
feature in the DOS function. For the rectangular and parabolic DOS function (figures 1(a)
and (b)) where the DOS feature is the band cut-off, the period is equal to 1/D = 1/9 and,
for the DOS functions depicted in figures 1(c) and (d) where the DOS feature is the narrow
Lorentzian peak, the periods are 2/D and 4/3D, respectively.

We have also investigated other shapes of DOS functions. For instance, for a triangular
DOS, ρ(ε) = 2(1 + ε/D), the conductance displays oscillations whose frequency is equal
to D, very similar to what was obtained for the parabolic DOS in figure 1(b). For two sharp
features at different energies D1 and D2 in the DOS, we obtain conductance modulations of
frequencies proportional to (D1 + D2) and (D1 − D2).
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Figure 3. Effect of the DOS function on the instantaneous conductance. Red (dotted), dark blue
(dot–dashed), black (solid) and green (dashed) curves display the instantaneous conductance versus
time in the long timescale for cases (a), (b), (c) and (d), respectively, in figure 1 when the source–
drain bias is equal to V = TK with fixed �tot. All curves are for an asymmetry factor of 0.9,
D = 9�tot at T = 0.0093�tot.

Figure 4. Panel (a) shows the instantaneous conductance for several different temperatures with
asymmetry factor of 0.9, fixed �tot, D = 9�tot and rectangular DOS. Dark blue (dot–dot–
dashed), red (dot–dashed), green (dashed), light blue (dotted) and black (solid) curves represent
the conductance at T = 0.0186, 0.0093, 0.0046, 0.0023, and 0.0009�tot, respectively. Red
(dot–dashed), black (dotted) and dark blue (dashed) curves in panel (b) display the instantaneous
conductance versus time in the long timescale for rectangular DOS when the source–drain bias is
equal to V = TK, V = 5TK and V = 10TK, respectively, with fixed �tot and D = 9�tot for an
asymmetry factor of 0.9 at T = 0.0093�tot.

Figure 4 shows the effect of temperature and source–drain bias on the conductance
oscillations. The figure demonstrates that the amplitude of the oscillations decreases with
temperature and bias across the dot but their frequency remain unchanged. The figure shows
two important effects. First, it takes longer for the current and thus the damped oscillations
to decay as the temperature or source–drain bias is reduced. Second, the amplitude of the
damped oscillations increases with decreasing temperature or source–drain bias but saturates
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for temperatures and bias below the Kondo temperature, which we estimate to be around
TK = 0.0016�tot in these systems.

4. Discussion

Our numerical calculations clearly show that the timescale for the decay of the conductance
oscillations is much larger than the fast timescales set by the couplings of the dot level to the
leads, �L or �R. The timescale does not depend on the width or shape of the DOS feature in
the leads. It appears that the timescale is related to the Kondo resonance. When the Kondo
resonance is fully formed at times around 1/TK, the oscillations disappears.

Further support for the role of Kondo physics in these conductance oscillations comes
from the observation of a saturation of their amplitude for temperatures and source–drain
bias below the Kondo temperature (figure 4). The effect of temperature and source–drain
bias on the Kondo resonance in an SET was recently investigated in detail [23]. For values
smaller than the Kondo temperature, the Kondo resonance is fully formed just above the
Fermi level. Increasing the temperature above TK broadens and reduces the magnitude of
the resonance. Increasing the source–drain bias results in the formation of a split Kondo
resonance with strongly reduced intensities. For temperatures or source–drain bias well above
the Kondo temperature, the Kondo resonance is completely suppressed. Since the frequency of
the oscillations is determined by the energy difference between the Fermi level and the DOS
feature, we believe that the oscillations reflect an interference process between the conduction
electrons associated with the Kondo resonance and the conduction electrons associated with
the DOS feature. In order to substantiate this explanation, we used a simple analytical non-
interacting Anderson model to calculate the instantaneous conductance following the sudden
switching of a dot level of width �eff equal to that of the final Kondo resonance in the interacting
model. This effective resonance was switched to a position just above the Fermi level of the
leads. These calculations were performed numerically for both the parabolic and rectangular
DOS functions shown in figures 1(a) and (b). The instantaneous conductance was found to
display the same conductance oscillations with frequencies determined by the bandwidth D as
in the original interacting model. The oscillations are found to decay over a long timescale
determined by �eff.

While the Kondo temperature depends only on the total coupling to the leads �tot, the total
current depends on the asymmetry factor. The reason why the conductance oscillations only
show up for asymmetric couplings is that the total current through the dot is the difference
between the currents from the left and right leads, equation (6). The interference effect shows
up both in the right and the left currents. For symmetric coupling, the current oscillations from
the right and left leads are out of phase, resulting in a cancellation of the oscillations in the total
current. For asymmetric coupling the left and right current oscillations do not cancel, resulting
in the observed conductance oscillations. This result has also been verified numerically for the
non-interacting model described in the preceding paragraph.

For dots coupled to leads with very weak DOS features, the conductance oscillations will
be very small. In figure 5 we show the time derivative of the instantaneous current for leads
with a parabolic DOS function (figure 1(b)) for three different values of the bandwidth D. The
conductance oscillations here result from the interference of the Kondo resonance in the final
state and the weak discontinuity in the DOS at the lower band edge of the leads. The figure
clearly demonstrates oscillations of the instantaneous currents with a frequency equal to D in
the long timescale.

The experimental study of the conductance oscillations could possibly be made using
previously suggested techniques, i.e. by measuring the total charge transport as a function
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Figure 5. Time derivative of the instantaneous current in the long timescale for parabolic DOS
(figure 1(b)). Black (solid), red (dashed) and dark blue (dot–dashed) curves correspond to D =
6.75�tot, D = 9�tot and D = 13.5�tot for an asymmetry factor of 1.0 at T = 0.0093�tot.

of pulse duration [15]. For a bandwidth of D = 1 eV, the oscillation period will be of the
order of 10−14 s. Since the current oscillates, electromagnetic radiation will be emitted at a rate
proportional to [ dI (t)

dt ]2. For a suitably designed system it may be possible to detect the emitted
light. For D = 1 eV the emission would occur in the infrared at a photon energy of 0.1 eV.

5. Conclusion

In this paper, we employed the time-dependent non-crossing approximation to analyze the
transient current in a single-electron transistor in the Kondo regime asymmetrically coupled
to two metallic leads with features in their DOS. We show that, for asymmetric coupling, the
conductance can exhibit oscillations which persist for times much longer than the timescale for
charge relaxation. The origin of these oscillations is an interference between the conduction
electrons associated with the Kondo resonance and those associated with the DOS feature. The
amplitude of the oscillations are found to depend strongly on the temperature and source–drain
bias when these exceed the Kondo temperature. We hope that our predictions will motivate
further theoretical and experimental studies.
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